A note on uniquely maximal Banach spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on uniquely (nil) clean ring

A ring R is uniquely (nil) clean in case for any $a in R$ there exists a uniquely idempotent $ein R$ such that $a-e$ is invertible (nilpotent). Let $C =(A V W B)$ be the Morita Context ring. We determine conditions under which the rings $A,B$ are uniquely (nil) clean. Moreover we show that the center of a uniquely (nil) clean ring is uniquely (nil) clean.

متن کامل

L−maximal Regularity on Banach Spaces with a Schauder Basis

We investigate the problem of L p-maximal regularity on Ba-nach spaces having a Schauder basis. Our results improve those of a recent paper.

متن کامل

A note on Banach spaces with l1-saturated duals

Let E and F be Banach spaces. We say that E is F -saturated if every infinite dimensional closed subspace of E contains an isomorphic copy of F . In [2], it is shown that there exists a c0-saturated Banach space with an unconditional basis whose dual contains an isomorphic copy of l2. In this note, we give an example where the dual situation occurs. It is shown that there is a Banach space with...

متن کامل

A note on frames for operators in Banach spaces

In this paper, we study frames for bounded linear operators and defined the notion of Ad-operator frame for Banach spaces. A necessary and sufficient condition for a sequence of bounded linear operators to be an Ad-operator frame has been given. Some characterizations of Ad-operator frames have been discussed. Further, a method has been given to generate a -Banach frame using a Schauder frame. ...

متن کامل

A note on maximal non-prime ideals

The rings considered in this article are commutative with identity $1neq 0$. By a proper ideal of a ring $R$,  we mean an ideal $I$ of $R$ such that $Ineq R$.  We say that a proper ideal $I$ of a ring $R$ is a  maximal non-prime ideal if $I$ is not a prime ideal of $R$ but any proper ideal $A$ of $R$ with $ Isubseteq A$ and $Ineq A$ is a prime ideal. That is, among all the proper ideals of $R$,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1983

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091500028091